Impute missing values in a LipidomicsExperiment
impute_na(
data,
measure = "Area",
method = c("knn", "svd", "mle", "QRILC", "minDet", "minProb", "zero"),
...
)
LipidomicsExperiment object.
Which measure to use as intensity, usually Area,
Area Normalized or Height. Default is Area
.
The imputation method to use. All methods are wrappers for
imputeLCMD
package. These include
knn Wraps imputeLCMD::impute.wrapper.KNN()
. Default. This requires an
additional argument K
(Number of neighbors used to infer the missing data).
svd Wraps imputeLCMD::impute.wrapper.SVD()
. This requires an
additional argument K
(Number of principal components to use).
mle Wraps imputeLCMD::impute.wrapper.MLE()
,
minDet Wraps imputeLCMD::impute.MinDet()
,
minProb Wraps imputeLCMD::impute.MinProb()
,
zero Wraps imputeLCMD::impute.ZERO()
,
Other arguments passed to the imputation method.
LipidomicsExperiment object with missing values imputed.
data(data_normalized)
# Replace with values calculated using K-nearest neighbors
impute_na(data_normalized, "Area", "knn", 10)
#> class: LipidomicsExperiment
#> dim: 278 56
#> metadata(2): summarized dimnames
#> assays(3): Retention Time Area Background
#> rownames(278): 1 2 ... 277 278
#> rowData names(24): filename Molecule ... total_cs Class
#> colnames(56): S1A S2A ... TQC_11 TQC_12
#> colData names(3): group Diet BileAcid
# Replace with values calculated from the first K principal components
impute_na(data_normalized, "Area", "svd", 3)
#> class: LipidomicsExperiment
#> dim: 278 56
#> metadata(2): summarized dimnames
#> assays(3): Retention Time Area Background
#> rownames(278): 1 2 ... 277 278
#> rowData names(24): filename Molecule ... total_cs Class
#> colnames(56): S1A S2A ... TQC_11 TQC_12
#> colData names(3): group Diet BileAcid
# Replace with Maximum likelihood estimates
impute_na(data_normalized, "Area", "mle")
#> class: LipidomicsExperiment
#> dim: 278 56
#> metadata(2): summarized dimnames
#> assays(3): Retention Time Area Background
#> rownames(278): 1 2 ... 277 278
#> rowData names(24): filename Molecule ... total_cs Class
#> colnames(56): S1A S2A ... TQC_11 TQC_12
#> colData names(3): group Diet BileAcid
# Replace with randomly drawn values from a truncated distribution
impute_na(data_normalized, "Area", "QRILC")
#> class: LipidomicsExperiment
#> dim: 278 56
#> metadata(2): summarized dimnames
#> assays(3): Retention Time Area Background
#> rownames(278): 1 2 ... 277 278
#> rowData names(24): filename Molecule ... total_cs Class
#> colnames(56): S1A S2A ... TQC_11 TQC_12
#> colData names(3): group Diet BileAcid
# Replace with a minimal value
impute_na(data_normalized, "Area", "minDet")
#> class: LipidomicsExperiment
#> dim: 278 56
#> metadata(2): summarized dimnames
#> assays(3): Retention Time Area Background
#> rownames(278): 1 2 ... 277 278
#> rowData names(24): filename Molecule ... total_cs Class
#> colnames(56): S1A S2A ... TQC_11 TQC_12
#> colData names(3): group Diet BileAcid
# Replace with randomly drawn values from a Gaussian distribution
# cerntered around a minimal value
impute_na(data_normalized, "Area", "minProb")
#> [1] 0.4174013
#> class: LipidomicsExperiment
#> dim: 278 56
#> metadata(2): summarized dimnames
#> assays(3): Retention Time Area Background
#> rownames(278): 1 2 ... 277 278
#> rowData names(24): filename Molecule ... total_cs Class
#> colnames(56): S1A S2A ... TQC_11 TQC_12
#> colData names(3): group Diet BileAcid
# Replace with zero (not recommended)
impute_na(data_normalized, "Area", "zero")
#> class: LipidomicsExperiment
#> dim: 278 56
#> metadata(2): summarized dimnames
#> assays(3): Retention Time Area Background
#> rownames(278): 1 2 ... 277 278
#> rowData names(24): filename Molecule ... total_cs Class
#> colnames(56): S1A S2A ... TQC_11 TQC_12
#> colData names(3): group Diet BileAcid