lipidr supports two types of plots for sample quality checking.tic plots a bar chart for total sample intensity.boxplot plots a boxplot chart to examine the distribution of values
per sample.
plot_samples(
  data,
  type = c("tic", "boxplot"),
  measure = "Area",
  log = TRUE,
  color = NULL
)LipidomicsExperiment object.
plot type, either tic or boxplot. Default is tic.
Which measure to use as intensity, usually Area,
Area Normalized or Height. Default is Area
Whether values should be log2 transformed. Default is TRUE
The column name of a sample annotation to be used as color
A ggplot object.
data(data_normalized)
plot_samples(data_normalized, type = "tic", "Area", log = TRUE)
 plot_samples(data_normalized, type = "tic", "Background", log = FALSE)
#> Warning: Removed 1 rows containing non-finite values (`stat_summary()`).
plot_samples(data_normalized, type = "tic", "Background", log = FALSE)
#> Warning: Removed 1 rows containing non-finite values (`stat_summary()`).
 plot_samples(
  data_normalized[, data_normalized$group == "QC"],
  type = "boxplot",
  measure = "Retention Time", log = FALSE
)
#> Warning: Removed 1 rows containing non-finite values (`stat_boxplot()`).
plot_samples(
  data_normalized[, data_normalized$group == "QC"],
  type = "boxplot",
  measure = "Retention Time", log = FALSE
)
#> Warning: Removed 1 rows containing non-finite values (`stat_boxplot()`).
